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Abstract—An efficient method-of-moments (MoM) solution is
presented for analysis of multilayer microstrip antennas and cir-
cuits. The required multilayer Green’s functions are evaluated by
the discrete complex image method (DCIM), with the guided-mode
contribution extracted recursively using a multilevel contour inte-
gral in the complex -plane. An interpolation scheme is employed
to further reduce the computer time for calculating the Green’s
functions in the three-dimensional (3-D) space. Higher order inter-
polatory basis functions defined on curvilinear triangular patches
are used to provide necessary flexibility and accuracy for the dis-
cretization of arbitrary shapes and to offer a better convergence
than lower order basis functions. The combination of the improved
DCIM and the higher order basis functions results in an efficient
and accurate MoM analysis for 3-D multilayer microstrip struc-
tures.

Index Terms—Green’s function, higher order method, method
of moments, microstrip antennas, microstrip circuits, numerical
analysis.

I. INTRODUCTION

T HE method-of-moments (MoM) solution of integral equa-
tions has received intense attention to tackle the multilayer

medium problems. In this method, the evaluation of Green’s
functions and the choice of basis functions are crucial to ob-
taining an accurate and efficient solution.

The Green’s function for multilayered media has the form of
a Sommerfeld integral. In general, the analytical solution of this
integral is not available, and the numerical integration is time
consuming since the integrand is both highly oscillating and
slowly decaying. Several efficient techniques have been pro-
posed to speed up this numerical integration [1]. Recent efforts
to further accelerate the computation include the fast Hankel
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transform (FHT) approach [2], [3], the steepest descent path
(SDP) approach [4], the window function approach [5], and the
discrete complex image method (DCIM) [6]–[16].

In this paper, an improved DCIM is employed to efficiently
evaluate the Green’s functions. The spectral-domain Green’s
functions for multilayer media are first derived from a simple
transmission-line perspective. The DCIM is then employed
to efficiently evaluate the Sommerfeld integrals, resulting in
closed-form spatial-domain Green’s functions. To evaluate the
far-field Green’s functions accurately, it is necessary to extract
surface waves to approximate asymptotic behavior.
In the previous research on the DCIM, the surface-wave
contribution is treated analytically by using residue calculus,
which makes it difficult to be extended to multilayer cases.
Here, the surface-wave contribution is obtained by performing
a contour integral recursively in the complex-plane [16].
This approach works for a general multilayer medium with an
arbitrary number of layers, whether open or shielded and lossy
or lossless. To make the Green’s function evaluation even more
efficient, especially for three-dimensional (3-D) structures, an
interpolation scheme is employed, which is able to recompute
the Green’s functions as efficiently as in free-space problems.

The choice of basis functions is also critical for the MoM
analysis. Traditional numerical modeling employs rooftop func-
tions for rectangular elements or Rao–Wilton–Glisson (RWG)
functions [17] for triangular elements. These functions are com-
plete to the zeroth order in a sense that they have constant normal
and linear tangential components at element edges and their
divergence, which represents the charge density, is a constant
within each element. As a result, a very fine discretization is
often required to yield an accurate solution. This leads to a large
matrix equation, which is expensive to solve. In addition, the
numerical solution converges slowly to the exact one when the
discretization is made finer. As a solution to this problem, higher
order basis functions have been developed [18]–[20]. In this
study, the higher order interpolatory basis functions defined on
curvilinear triangular patches [19] are employed, which have a
better convergence rate and can yield an accurate solution with
a rather coarse discretization. Combining the higher order basis
functions with the DCIM yields an efficient and accurate MoM
analysis for 3-D multilayer microstrip structures.
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Fig. 1. Multilayer medium with source and field points in layerm and layer
n, respectively, and its transmission-line representation.

II. FORMULATION

This section describes the evaluation of multilayer Green’s
functions using the improved DCIM and MoM solution using
higher order basis functions.

A. Multilayer Medium Green’s Functions

Consider a current source in a multilayer medium. Each layer
is characterized by relative permittivity, relative permeability

, and thickness, as shown in Fig. 1. The electric field due to
the current can be expressed in a mixed-potential form as

(1)

where denotes the electric current density of the source, and
and are the Green’s functions for the vector and scalar

potentials, respectively. The detailed discussion in [21] shows
that it is preferable to choose as

(2)

and as the scalar potential for a horizontal electric dipole
(HED).

In general, the Green’s function for a multilayer medium
is expressed in terms of a Sommerfeld integral, which can be
written as

(3)

where is the spectral-domain counterpart of. The derivation
of the spectral-domain Green’s functions for multilayer media
can be accomplished by constructing equivalent transmission
lines [21], [22]. The original problem to find electric and mag-
netic fields is thus converted to the problem of obtaining the
voltages and currents of the corresponding transmission lines.
From the voltages and currents, the Green’s functions for the

vector potential and the scalar potential can be derived
as

(4)

(5)

(6)

(7)

where and are the voltages and currents of the equiva-
lent transmission line. and are related to and
by the reciprocity principle, which gives

(8)

Therefore, the Green’s functions required in this method are
, and . Furthermore, and have

the same kernels so that a total of only four Green’s functions
are required for evaluation.

Once the spectral-domain Green’s functions are obtained,
the DCIM can be applied to rapidly evaluate the Sommerfeld
integrals. Rewrite the spectral-domain Green’s function in a
simple form as , where is a constant. As
the first step of the DCIM, the primary field term (which is
the field in the absence of the multilayer medium) is extracted
from when the source and observation points are in the
same layer. Note that there is no primary field term in .
The static contributions , which dominate as ,
are also extracted, making the remaining kernel decay to
zero for a sufficiently large . This happens only when both
the source and field points are on an interface between two
different layers. The next step is to extract the guided-mode
contributions, denoted by . Here, the guided modes refer to
surface-wave modes for open multilayer media, and both sur-
face-wave modes and ground-plane guided modes for shielded
multilayer media. In the previous DCIM, the guided-mode
contributions are extracted analytically using residue calculus,
which makes the DCIM difficult to be extended to multilayer
media. As a result, to use the DCIM for multilayer media, the
guided modes are often not extracted. However, the lack of the
guided-mode extraction results in errors in the far-field region
since the guided modes have asymptotic behavior. For
a general-purpose algorithm, especially for the MoM analysis
of electrically large structures, the guided modes have to be
extracted. In this study, the extraction of guided modes is
carried out numerically by evaluating a contour integral in
the complex -plane [16]. It begins with the evaluation of
the contour integral along a rectangle in the-plane and a
check of the computed value. If it is nonzero, the rectangle is
subdivided into four sub-rectangles and the contour integral
is performed on each of them. The process is repeated until
the pole locations and residues are precisely determined. This
multilevel method is very fast since it requires only steps
to locate a pole with the precision ofdigits.
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Fig. 2. Magnitude of~G in the first and fourth quadrants of the complex
k -plane for a shield three-layer medium at 20 GHz. Unit for thickness is
millimeters.

To illustrate the process described above, a shielded three-
layer medium [3] is considered. The magnitude of in the
first and fourth quadrants is plotted in Fig. 2 for the case that
both the source and observation points are at the interface be-
tween the second and third layers and the frequency is at
GHz. The contour integral is repeated until we find the poles at

and . The pole at
corresponds to a surface wave. The other two poles are associ-
ated with the modes guided by the two ground planes. The poles
on the imaginary axis corresponds to evanescent modes, which
are not extracted in this method. If one of the ground planes is
removed, the ground-plane guided modes become the contin-
uous modes, or the radiation modes, which comprise the Som-
merfeld branch cut [23]. The radiation modes are not extracted
in this method.

After the guided-mode extraction, the generalized pencil-of-
function (GPOF) method [24] is applied to approximate the re-
maining kernel. With the aid of the Sommerfeld identity, we can
obtain the closed-form Green’s functions for vector and scalar
potentials.

However, the guided-mode extraction gives rise to a problem
in the near-field calculation. It is well known that when ,
the Green’s function is not singular at ; however, the
guided-mode term carries the singularity. To overcome this dif-
ficulty, a transition point is introduced to divide the near- and
far-field regions. The DCIM is then applied twice, one with and
the other without the guided-mode extraction [6], [13], [15].
The first calculates the Green’s function for the near-field re-
gion, and the second calculates the Green’s function for the
far-field region. Fig. 3 shows the magnitudes of the four Green’s
functions and for the shielded three-layer
medium depicted in Fig. 2. Fig. 4 displays the magnitudes of

Fig. 3. Magnitude of Green’s functions (G ;G ;G ; and G ) for a
shielded three-layer medium at 20 GHz withz = z = 0:762 mm.

Fig. 4. Magnitude of Green’s functions (G ;G ;G ; and G ) for a
five-layer medium at 30 GHz withz = z = 0:4 mm. Unit for thickness is
millimeters.

the Green’s functions for a five-layer medium without a shield
at the top. In both figures, the DCIM results are calculated using
six complex images and compared with those obtained by direct
numerical integration along the Sommerfeld integration path
(SIP). The agreement in all cases is excellent.

The DCIM provides an efficient way to evaluate the Green’s
functions; however, issues about computer time still have to be
considered since the number of Green’s functions to be eval-
uated is proportional to in the MoM analysis, where

denotes the number of unknowns. Since the guided modes
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(a) (b)

Fig. 5. (a) Curvilinear patch in the(x; y; z) space. (b) Transformed patch in
the (� ; � ) plane.

are expressed in terms of the Hankel function, their evalua-
tion is expensive compared to the evaluation of the remaining
part. Furthermore, for structures supporting vertical currents,
the Green’s functions for all the different combinations ofand

are needed. The DCIM has to be performed for every com-
bination, although it is possible for some cases to generate the
complex images that are independent ofand . To circumvent
these problems, an interpolation scheme is usually employed
[2], [14], [25]–[27]. In this scheme, sections along the-axis
where the structure is located are first determined, and then sub-
divided into sheets. Hence, there are a total of combina-
tions of and . For each pair of sheets, the DCIM is performed
and the Chebyshev interpolation is applied to the variable[28].
For and , the reciprocity principle can reduce the
number of times to perform the DCIM to . When

and are located between those sheets, the Lagrange polyno-
mial interpolation is employed for the variablesand [28].

With the interpolation strategy, the computer time to evaluate
the Green’s functions for multilayer media is further reduced in
the MoM analysis. Moreover, it is possible to store the interpo-
lation coefficients as a database instead of performing the inter-
polations online. Therefore, the generation of Green’s functions
can be decoupled from specific circuit geometries.

B. Higher Order Basis Functions

With an applied field , the induced current on microstrips
can be found by solving the following mixed-potential integral
equation (MPIE):

(9)

where denotes the unit normal. To solve this integral equation
by the MoM, the microstrip surface is first divided into curvi-
linear triangular patches, which offer more flexibility and accu-
racy to model arbitrary shapes than flat triangular patches with
straight edges. A quadratic triangular patch is shown in Fig. 5(a),
which is described by six nodes. After the coordinate transfor-
mation, shown in Fig. 5(b), we can easily describe any vector
on the patch in terms of the quadratic shape function

(10)

where the coordinates have the dependence relation as
and the shape functions are given by

(11)

The edge vectors can be calculated as

(12)

and the gradient vectors are evaluated by

(13)

where is the Jacobian of the transformation.
The building blocks of the higher order interpolatory basis

functions are the zeroth-order basis functions, which are given
by

(14)

The zeroth-order basis functions on the flat triangular patch are
also known as the RWG basis functions [17].

The higher order interpolatory vector basis functions on a
given triangular patch are constructed by multiplying the ze-
roth-order basis functions with a set of polynomial functions
[19]

(15)

where denotes the edge number associated with the zeroth-
order basis function, , and are the indexes for labeling the
interpolation points, which satisfy , and
takes or for , or , respectively. The normalization
coefficients are given by

(16)

The is the polynomial function defined as

(17)

where the shifted Silvester–Lagrange polynomialis given by

(18)
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(a) (b)

Fig. 6. Convergence behavior of the higher order basis functions (The reference solution is obtained using the third-order basis functions with an overly dense
mesh). (a) rms error versus number of unknowns. (b) CPU time versus number of unknowns.

(a) (b)

Fig. 7. S-parameters of an annular-ring microstrip power divider. The substrate has� = 2:2 andh = 0:79 mm. The linewidth is 2.4 mm. The inner and outer
radii of the annular ring are 1.5 and 7.2 mm, respectively. The angles between ports 1 and 2 and ports 1 and 4 are 60.

The number of degrees of freedom is on
a triangular patch for the basis functions of order.

With the higher order basis functions described above, the
current density on each patch can be expanded as

(19)

Substituting (19) into (9) and applying Galerkin’s procedure, we
obtain a matrix equation

(20)

where the global impedance matrixand the right-hand-side
vector are assembled from the local impedance matrix and local
right-hand-side vector, respectively. For example, the local
impedance matrix for patch and patch has the dimension

, and the local right-hand-side vector has the dimension
, whose elements and are given by

(21)

(22)

The double surface integrals are involved in the matrix element,
which are evaluated by using a Gaussian quadrature when the
two patches do not overlap. When they do, the method proposed
by Duffy [29] is employed to evaluate the singular integrals. The
applied field in the right-hand side is different for different prob-
lems. For scattering problems, the applied field is the electric
field in the multilayer medium without microstrips. For circuit
problems, a voltage delta source is usually applied to the exci-
tation port so that the boundary edges on the excitation port are
treated as unknowns.
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(a) (b)

(c)

Fig. 8. S-parameters of a spiral inductor. The substrate has� = 9:6 andh = 2:0 mm. The linewidths and spacings are all 2.0 mm. The height and the span of
the air bridges are 1.0 and 6.0 mm, respectively.

(a) (b)

Fig. 9. S-parameters of a spiral inductor. The substrate has� = 9:8 andh = 0:635 mm. See [33] for detailed information about the geometry.

Equation (20) can be solved to yield the current distribu-
tion on the microstrips. From the current distribution, radar
cross sections for scattering problems, radiation patterns for
antenna problems, or-parameters for circuit problems can be
determined [30]. For the -parameter extraction, we use the
three-point curve-fitting scheme together with the precalcu-
lated characteristic impedance and propagation constant of the
corresponding microstrip line.

III. N UMERICAL RESULTS

To demonstrate the convergence behavior of higher order
basis functions, we consider a circular microstrip patch, which
has 1-cm radius and resides on a substrate with 2.2 relative
permittivity and 0.787-mm thickness. The root mean square
(rms) error in the monostatic radar cross section averaged over
many angles of incidence at 10 GHz is calculated using the
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reference solution obtained by the third-order basis functions
with an overly dense mesh. Fig. 6 shows the error and CPU
time for matrix filling (excluding that for the initial Green’s
function generation, which is the same regardless of the order
of basis function to be used). It is observed from this figure that,
for the same number of unknowns, the higher order scheme
gives more accurate results, and converges faster than the lower
order scheme.

The second example is a four-port annular-ring power di-
vider, which has been analyzed using an approximate planar
circuit model that assumes a magnetic wall at the microstrip’s
edges [31]. Here, the curved boundaries are precisely modeled
by curvilinear patches, as shown in Fig. 7. The results obtained
using the second-order basis functions with 612 unknowns are
given in Fig. 7. Also shown are the results computed using Mo-
mentum,1 which uses zeroth-order basis functions with 1182
unknowns (The data of [31] is not shown here).

The examples above have no vertical currents so that only one
component in is required to build the impedance ma-
trix. In the following two examples, we show the capability of
the method to deal with 3-D structures with both horizontal and
vertical currents. The first example is a microstrip spiral induc-
tors, which has previously been analyzed using the finite-dif-
ference time-domain (FDTD) method [32]. Its discretization is
shown in Fig. 8(a), a top view of the current distribution at

GHz is displayed in Fig. 8(b), and the results obtained
using the second-order basis functions with 1263 unknowns are
given in Fig. 8(c). Also shown in Fig. 8(c) are the results com-
puted using Momentum with 2247 unknowns, in which the ver-
tical current is approximated by one rooftop basis function and
the transverse current is neglected. These results also compare
reasonably well with the FDTD solution in [32].

The second example is also an inductor, whose detailed geo-
metrical information is given in [33]. The only difference here
is that the bonding edge of the bridge and spire is shifted from
the center to the side. The-parameters calculated using the
second-order basis functions with 840 unknowns are given in
Fig. 9 along with the discretization of the structure.

IV. CONCLUSION

A MoM solution has been presented for the analysis of multi-
layer microstrip antennas and circuits. The required multilayer
Green’s functions have been evaluated by the DCIM, with the
guided-mode contributions extracted recursively using a multi-
level contour integral in the complex -plane. An interpolation
scheme has been employed to further speed up the calculation
of the Green’s functions in the 3-D space. Higher order interpo-
latory basis functions defined on curvilinear triangular patches
have been used to provide necessary flexibility and accuracy to
discretize arbitrary shapes and represent the electric currents on
their surfaces. These higher order functions also offered a better
convergence than the lower order ones. The combination of the
DCIM with the guided-mode extraction and the higher order
basis functions on curvilinear patches resulted in an efficient
and accurate MoM analysis for 3-D multilayer microstrip struc-
tures.

1Advanced Design System 1.5, Agilent Technol., Palo Alto, CA, 2001.
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