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Abstract—An efficient method-of-moments (MoM) solution is
presented for analysis of multilayer microstrip antennas and cir-
cuits. The required multilayer Green'’s functions are evaluated by
the discrete complex image method (DCIM), with the guided-mode
contribution extracted recursively using a multilevel contour inte-
gral in the complexk,-plane. An interpolation scheme is employed
to further reduce the computer time for calculating the Green’s
functions in the three-dimensional (3-D) space. Higher order inter-
polatory basis functions defined on curvilinear triangular patches
are used to provide necessary flexibility and accuracy for the dis-
cretization of arbitrary shapes and to offer a better convergence
than lower order basis functions. The combination of the improved
DCIM and the higher order basis functions results in an efficient
and accurate MoM analysis for 3-D multilayer microstrip struc-
tures.

Index Terms—Green’s function, higher order method, method
of moments, microstrip antennas, microstrip circuits, numerical
analysis.

|I. INTRODUCTION

HE method-of-moments (MoM) solution of integral equ
tions has received intense attention to tackle the multila
medium problems. In this method, the evaluation of Gree
functions and the choice of basis functions are crucial to
taining an accurate and efficient solution.
The Green'’s function for multilayered media has the form

integral is not available, and the numerical integration is ti
consuming since the integrand is both highly oscillating a

slowly decaying. Several efficient techniques have been pr

posed to speed up this numerical integration [1]. Recent eff

0,
to further accelerate the computation include the fast Hanl%g}
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transform (FHT) approach [2], [3], the steepest descent path
(SDP) approach [4], the window function approach [5], and the
discrete complex image method (DCIM) [6]-[16].

In this paper, an improved DCIM is employed to efficiently
evaluate the Green’s functions. The spectral-domain Green'’s
functions for multilayer media are first derived from a simple
transmission-line perspective. The DCIM is then employed
to efficiently evaluate the Sommerfeld integrals, resulting in
closed-form spatial-domain Green'’s functions. To evaluate the
far-field Green'’s functions accurately, it is necessary to extract
surface waves to approximate/,/p asymptotic behavior.

In the previous research on the DCIM, the surface-wave
contribution is treated analytically by using residue calculus,
which makes it difficult to be extended to multilayer cases.
Here, the surface-wave contribution is obtained by performing
a contour integral recursively in the compléx-plane [16].
This approach works for a general multilayer medium with an
arbitrary number of layers, whether open or shielded and lossy
or lossless. To make the Green’s function evaluation even more

efficient, especially for three-dimensional (3-D) structures, an

y|‘f\\"terpolation scheme is employed, which is able to recompute

i

e Green’s functions as efficiently as in free-space problems.
"The choice of basis functions is also critical for the MoM
nalysis. Traditional numerical modeling employs rooftop func-

Flons for rectangular elements or Rao-Wilton-Glisson (RWG
a Sommerfeld integral. In general, the analytical solution of thf g ( )

dnctions [17] for triangular elements. These functions are com-
ete to the zeroth order in a sense that they have constant normal
d linear tangential components at element edges and their
&Vergence, which represents the charge density, is a constant
hin each element. As a result, a very fine discretization is
en required to yield an accurate solution. This leads to a large
matrix equation, which is expensive to solve. In addition, the
numerical solution converges slowly to the exact one when the
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curvilinear triangular patches [19] are employed, which have a

,fé‘étter convergence rate and can yield an accurate solution with

a rather coarse discretization. Combining the higher order basis
functions with the DCIM yields an efficient and accurate MoM

zféhalysis for 3-D multilayer microstrip structures.
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Fig. 1. Multilayer medium with source and field points in layerand layer

n, respectively, and its transmission-line representation.

Il. FORMULATION

This section describes the evaluation of multilayer Gree
functions using the improved DCIM and MoM solution usinqh

higher order basis functions.

A. Multilayer Medium Green’s Functions

ns

Therefore, the Green’s functions required in this method are
G, GL,G2,, G2, andG?®. Furthermore(¥:t, and G, have

the same kernels so that a total of only four Green'’s functions
are required for evaluation.

Once the spectral-domain Green’s functions are obtained,
e DCIM can be applied to rapidly evaluate the Sommerfeld
integrals. Rewrite the spectral-domain Green’s function in a

simple form ag7 = AF/(2jk.), where A is a constant. As

. ) . ) the first step of the DCIM, the primary field ter#i,. (which is
~ Consider a current source in a multilayer medium. Each laygf field in the absence of the multilayer medium) is extracted
is characterized by relative permittivity, relative permeability o1 7 when the source and observation points are in the

pr, and thickness, as shown in Fig. 1. The electric field due togg y,e layer. Note that there is no primary field terméglt.

the current can be expressed in a mixed-potential formas  The static contributiong”.,, which dominate ag:, — oo
St I )

are also extracted, making the remaining kernel decay to
zero for a sufficiently largé,. This happens only when both

. . the source and field points are on an interface between two
whereJ denotes the electric current density of the source, aftkarent layers. The next step is to extract the guided-mode

G+ andG'® are the Green’s functions for the vector and scalap htributions. denoted by,... Here, the guided modes refer to

. . . . . . ’ gm:- ’
pote_nt_lals, respectively. Theﬁojlietalled discussion in [21] Sho‘g’ﬁrface-wave modes for open multilayer media, and both sur-
that it is preferable to choodg as face-wave modes and ground-plane guided modes for shielded

E = —jupuo(GHJI) + #v(cﬁ’, v'-J) (1)
Jweo

GA 0 GA multilayer media. In the previous DCIM, the guided-mode
G'=| 0 G& Gi (2) contributions are extracted analytically using residue calculus,

which makes the DCIM difficult to be extended to multilayer

media. As a result, to use the DCIM for multilayer media, the

and G* as the scalar potential for a horizontal electric dipolguided modes are often not extracted. However, the lack of the

(HED). guided-mode extraction results in errors in the far-field region
In general, the Green'’s function for a multilayer mediungince the guided modes havg,/p asymptotic behavior. For

is expressed in terms of a Sommerfeld integral, which can hegeneral-purpose algorithm, especially for the MoM analysis

A A A
Gzac Gzy Gzz

written as of electrically large structures, the guided modes have to be
) Y ) extracted. In this study, the extraction of guided modes is
G(p,z|7') = g/o G(kp, 2| 2') Jo(k,p)k,pdk,  (3)  carried out numerically by evaluating a contour integral in

the complexk,-plane [16]. It begins with the evaluation of

where@ is the spectral-domain counterpart®fThe derivation the contour integral along a rectangle in the-plane and a

of the spectral-domain Green’s functions for multilayer medieheck of the computed value. If it is nonzero, the rectangle is
can be accomplished by constructing equivalent transmissiurbdivided into four sub-rectangles and the contour integral
lines [21], [22]. The original problem to find electric and magis performed on each of them. The process is repeated until
netic fields is thus converted to the problem of obtaining thte pole locations and residues are precisely determined. This
voltages and currents of the corresponding transmission lineaultilevel method is very fast since it requires oibg »n steps
From the voltages and currents, the Green’s functions for tteelocate a pole with the precision afdigits.
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Fig. 3. Magnitude of Green’s functionsz¢,, G2 G4 . and G?) for a
shielded three-layer medium at 20 GHz with= =z’ = 0.762 mm.
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Fig. 2. Magnitude ofG® in the first and fourth quadrants of the complex 3 125 03
k,-plane for a shield three-layer medium at 20 GHz. Unit for thickness is
millimeters. 2 98 05
1 86 03

To illustrate the process described above, a shielded three
layer medium [3] is considered. The magnituded@t in the .
first and fourth quadrants is plotted in Fig. 2 for the case that ™ ' ' ' ‘
both the source and observation points are at the interface be

tween the second and third layers and the frequencyfis=af0 10
GHz. The contour integral is repeated until we find the poles at
k, = 0.671ko,0.719ko, and1.055ke. The pole ak, = 1.055kq 10°

corresponds to a surface wave. The other two poles are assoc
ated with the modes guided by the two ground planes. The pole:
on the imaginary axis corresponds to evanescent modes, whic
are not extracted in this method. If one of the ground planesis |
removed, the ground-plane guided modes become the contin
uous modes, or the radiation modes, which comprise the Som
merfeld branch cut [23]. The radiation modes are not extracted 1°
in this method.

After the guided-mode extraction, the generalized pencil-of- 1075 : = = x .
function (GPOF) method [24] is applied to approximate the re- 10 10 10 koP 10 10 10
maining kernel. With the aid of the Sommerfeld identity, we can
obtain the closed-form Green’s functions for vector and scaleg. 4. Magnitude of Green’s functionszf,, G4 , G4 , and G®) for a
potentials. five-layer medium at 30 GHz with = 2’ = 0.4 mm. Unit for thickness is

However, the guided-mode extraction gives rise to a probl gjlimeters.
in the near-field calculation. It is well known that whenrt 2/,
the Green’s function is not singular at = 0; however, the the Green’s functions for a five-layer medium without a shield
guided-mode term carries the singularity. To overcome this ddt the top. In both figures, the DCIM results are calculated using
ficulty, a transition point is introduced to divide the near- andix complex images and compared with those obtained by direct
far-field regions. The DCIM is then applied twice, one with andumerical integration along the Sommerfeld integration path
the other without the guided-mode extraction [6], [13], [15)SIP). The agreement in all cases is excellent.
The first calculates the Green’s function for the near-field re- The DCIM provides an efficient way to evaluate the Green’s
gion, and the second calculates the Green’s function for theactions; however, issues about computer time still have to be
far-field region. Fig. 3 shows the magnitudes of the four Greent®nsidered since the number of Green'’s functions to be eval-
functionsGZ,, G, G2, and G? for the shielded three-layer uated is proportional t@(N?) in the MoM analysis, where

X zx? zz)

medium depicted in Fig. 2. Fig. 4 displays the magnitudes &f denotes the number of unknowns. Since the guided modes

Magnitude
=
N
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& where the coordinates, £, £3 have the dependence relation as
. 2 & + & + &3 = 1 and the shape functions are given by
6

s o1 =¢&1(26 - 1)
z 3 \ 02 =&2(26 — 1)
1 4 2 . 3 = &3(283 — 1)

’ 3 e g ¢4 =466

P
5 = 4
@) (b) ¥ £263
e = 4£381. (11)

Fig. 5. (a) Curvilinear patch in ther, v, z) space. (b) Transformed patch in

the (&1, &2) plane. The edge vectors can be calculated as

tion is expensive compared to the evaluation of the remaining Lt _852 2 & 3 8_52 B 8_51
part. Furthermore, for structures supporting vertical currents,
the Green’s functions for all the different combinationg afnd

are expressed in terms of the Hankel function, their evalua- P Or dr  Or (12)

and the gradient vectors are evaluated by

z' are needed. The DCIM has to be performed for every com- A

bination, although it is possible for some cases to generate the V& = 7

complex images that are independent ahd>’. To circumvent A X £y

these problems, an interpolation scheme is usually employed V& = 7

[2], [14], [25]-[27]. In this scheme, sections along thaxis Vés = —VE — VE (13)

where the structure is located are first determined, and then sub-

divided intoNV, sheets. Hence, there are a totaN\gf combina- here 7 is the Jacobian of the transformation.
tions ofz and>’. For each pair of sheets, the DCIM is performed The building blocks of the higher order interpolatory basis

and the Chebyshev interpolation is applied to the variafi®8].  functions are the zeroth-order basis functions, which are given

ForGz,, G2, andG?, the reciprocity principle can reduce theyy

number of times to perform the DCIM &, (N, 4+ 1)/2. When

z andz’ are located between those sheets, the Lagrange ponngi 5(r) = i(&ﬂ—le@—l _ Sa_lfa+1) 3=1,2,3. (14)

mial interpolation is employed for the variablesnd ' [28]. T T T
With the interpolation strategy, the computer time to evalualﬁ1

the Green’s functions for multilayer media is further reduced iy
the MoM analysis. Moreover, it is possible to store the mterpo The higher order interpolatory vector basis functions on a

Iatlor! coefﬂqents as a database msteaq of performing the 'T“ Iven triangular patch are constructed by multiplying the ze-
polations online. Therefore, the generation of Green’s functio Sh-order basis functions with a set of polynomial functions
can be decoupled from specific circuit geometries. [19]

e zeroth-order basis functions on the flat triangular patch are
so known as the RWG basis functions [17].

B. Higher Order Basis Functions 3
ijk

(p + 2)&pd;r(€)

(r) = Ng :
13

. N . . . Ap(r) (15)
With an applied fieldE®, the induced current on microstrips

can be found by solving the following mixed-potential integral
equation (MPIE): where3 denotes the edge number associated with the zeroth-

order basis function,, 7, andk are the indexes for labeling the
Ny <GA (0.7); 3()) mterpolatlon points, which satisfiy+ J+ k=p+2, al'.ld'L’g.
Jwho ) takesi, 7, ork for 4 = 1, 2, or3, respectively. The normalization
o coefficientsNg are given by
V{(G*¥(r,?), V' - J(x'))| = —n x E*(x) (9
P V(@ (). V- 3()) ) © -
Ng=——F—43
P + 2 — 13

(16)
wheres, denotes the unit normal. To solve this integral equation
by the MoM, the microstrip surface is first divided into C“Ni‘l'he&i,»k(g) is the polynomial function defined as
linear triangular patches, which offer more flexibility and accu- "
racy to model arbitrary shapes than flat triangular patches with 4, (&) = Ri(p+2,60)R;(p+ 2, &) Re(p+2,6)  (17)
straight edges. A quadratic triangular patch is shown in Fig. 5(a),

which is described by six nodes. After the coordinate transfaghere the shifted Silvester—Lagrange polynorﬁals given by
mation, shown in Fig. 5(b), we can easily describe any vactor
on the patch in terms of the quadratic shape funcgign

5 k), 2<1< 1
i) = G- p5 sispt

II”::|

[

6
r=> i(é,&,8)r; (10)
iz:; 1 2,43 (18)
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Fig. 6. Convergence behavior of the higher order basis functions (The reference solution is obtained using the third-order basis functionsnyittlemsev
mesh). (a) rms error versus number of unknowns. (b) CPU time versus number of unknowns.
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Fig. 7. S-parameters of an annular-ring microstrip power divider. The substrate.has2.2 andh = 0.79 mm. The linewidth is 2.4 mm. The inner and outer
radii of the annular ring are 1.5 and 7.2 mm, respectively. The angles between ports 1 and 2 and ports 1 and 4 are 60

The number of degrees of freedomis = (p+ 1)(p + 3) on  N. x N., and the local right-hand-side vector has the dimension

a triangular patch for the basis functions of orgder N., whose elementg;; andV; are given by
With the higher order basis functions described above, the
current density on each patch can be expanded as zym = —jwuo<Ai; <GA; Aﬂ'>5n>5
1
Ne — - VAL (G2, VA (21)
I(r) = LA(r). (19) Jweo < < )5, >sm
=1 ‘/inl = _<A17 Ea>sm' (22)

Substituting (19) into (9) and applying Galerkin’s procedure, wehe double surface integrals are involved in the matrix element,
obtain a matrix equation which are evaluated by using a Gaussian quadrature when the

two patches do not overlap. When they do, the method proposed

71—V (20) by Duffy [29] is employed to evaluate the singular integrals. The

applied field in the right-hand side is different for different prob-

lems. For scattering problems, the applied field is the electric
where the global impedance matiZand the right-hand-side field in the multilayer medium without microstrips. For circuit
vector are assembled from the local impedance matrix and lopabblems, a voltage delta source is usually applied to the exci-
right-hand-side vector, respectively. For example, the lodation port so that the boundary edges on the excitation port are
impedance matrix for patche and patchn has the dimension treated as unknowns.
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Fig. 8. S-parameters of a spiral inductor. The substratechas 9.6 andh = 2.0 mm. The linewidths and spacings are all 2.0 mm. The height and the span of
the air bridges are 1.0 and 6.0 mm, respectively.
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Fig. 9. S-parameters of a spiral inductor. The substratedhas 9.8 andh = 0.635 mm. See [33] for detailed information about the geometry.

Equation (20) can be solved to yield the current distribu- [ll. NUMERICAL RESULTS

tion on the microstrips. From the current distribution, radar

cross sections for scattering problems, radiation patterns fofTo demonstrate the convergence behavior of higher order
antenna problems, @f-parameters for circuit problems can béasis functions, we consider a circular microstrip patch, which

determined [30]. For the&-parameter extraction, we use théhas 1-cm radius and resides on a substrate with 2.2 relative
three-point curve-fitting scheme together with the precalcpermittivity and 0.787-mm thickness. The root mean square

lated characteristic impedance and propagation constant of firas) error in the monostatic radar cross section averaged over
corresponding microstrip line. many angles of incidence at 10 GHz is calculated using the
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reference solution obtained by the third-order basis functions
with an overly dense mesh. Fig. 6 shows the error and CPU
time for matrix filling (excluding that for the initial Green’s 1
function generation, which is the same regardless of the order
of basis function to be used). It is observed from this figure that, [2]
for the same number of unknowns, the higher order scheme
gives more accurate results, and converges faster than the lowe
order scheme.

The second example is a four-port annular-ring power di- 4]
vider, which has been analyzed using an approximate planai'
circuit model that assumes a magnetic wall at the microstrip’s
edges [31]. Here, the curved boundaries are precisely modelef!
by curvilinear patches, as shown in Fig. 7. The results obtained
using the second-order basis functions with 612 unknowns ards]
given in Fig. 7. Also shown are the results computed using Mo-
mentumi which uses zeroth-order basis functions with 1182 (7]
unknowns (The data of [31] is not shown here).

The examples above have no vertical currents so that only on?s]
componentG<, in G is required to build the impedance ma-
trix. In the following two examples, we show the capability of
the method to deal with 3-D structures with both horizontal and
vertical currents. The first example is a microstrip spiral induc-
tors, which has previously been analyzed using the finite-dif-
ference time-domain (FDTD) method [32]. Its discretization is°!
shown in Fig. 8(a), a top view of the current distribution at
f = 3.5 GHz is displayed in Fig. 8(b), and the results obtained
using the second-order basis functions with 1263 unknowns afél!
given in Fig. 8(c). Also shown in Fig. 8(c) are the results com-
puted using Momentum with 2247 unknowns, in which the ver{12]
tical current is approximated by one rooftop basis function and
the transverse current is neglected. These results also compgg
reasonably well with the FDTD solution in [32].

The second example is also an inductor, whose detailed geﬁ-4]
metrical information is given in [33]. The only difference here
is that the bonding edge of the bridge and spire is shifted from
the center to the side. The-parameters calculated using the [15]
second-order basis functions with 840 unknowns are given in
Fig. 9 along with the discretization of the structure. (16]

9]

IV. CONCLUSION [17]

A MoM solution has been presented for the analysis of multi-
layer microstrip antennas and circuits. The required multilaye8]
Green’s functions have been evaluated by the DCIM, with the, 4
guided-mode contributions extracted recursively using a multi-
level contour integral in the compléx,-plane. An interpolation
scheme has been employed to further speed up the calculatié!
of the Green'’s functions in the 3-D space. Higher order interpo-
latory basis functions defined on curvilinear triangular patche$21]
have been used to provide necessary flexibility and accuracy to
discretize arbitrary shapes and represent the electric currents g
their surfaces. These higher order functions also offered a better
convergence than the lower order ones. The combination of the,
DCIM with the guided-mode extraction and the higher order
basis functions on curvilinear patches resulted in an efficieni24]
and accurate MoM analysis for 3-D multilayer microstrip struc-
tures. [25]

1Advanced Design System J1Agilent Technol., Palo Alto, CA, 2001.
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